Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Salim F. Haddad* and Rawhi H. Al-Far

Department of Chemistry, The University of Jordan, Amman 11942, Jordan

Correspondence e-mail:
haddadsalim@hotmail.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.038$
$w R$ factor $=0.100$
Data-to-parameter ratio $=14.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2,6-Diaminopyridinium bromide monohydrate

In the title compound, $\left[\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3}\right] \mathrm{Br} \cdot \mathrm{H}_{2} \mathrm{O}$, the 2,6 -diaminopyridine is protonated on the ring N atom. The cation is planar. The moieties are held together by extensive hydrogen bonding and by $\pi-\pi$ interactions. The bromide ion is hydrogen bonded, as acceptor, to two $\mathrm{H}_{2} \mathrm{O}$ molecules, with an average $\mathrm{Br} \cdots \mathrm{H}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ distance of 3.322 (11) \AA, to the ring N atom $\mathrm{Br} \cdots \mathrm{N}-\mathrm{H}(\mathrm{NH}) 3.353$ (3) \AA, and to four amino N atoms, with an average $\mathrm{Br} \cdots \mathrm{H}-\mathrm{N}\left(\mathrm{NH}_{2}\right) 3.63$ (14) \AA. The water molecule bonds, as acceptor, to the pyridine N atom $\mathrm{O} \cdots \mathrm{H}-\mathrm{N}\left(\mathrm{NH}_{2}\right)$ 2.583 (5) \AA. The closest $\pi-\pi$ interaction is between pyridine ring planes, with an interplanar spacing $3.358 \AA$ apart.

Comment

As part of our studies of the role of weak intermolecular interactions in the determination of crystal-structure hydrogen bonding involving halide ions, halogen-halide interactions, as well as $\pi-\pi$ stacking effects, are found to play a role in the organization of structural units (Desiraju, 2001; Haddad \& Willett, 2001; Willett et al., 2003). The determination of the title structure, (I), was undertaken to investigate the structural synthetic effects in the absence of aryl-halogen and halometalate anions.

(I)

The cations in the title compound are planar, with a mean deviation from planarity of $0.0034 \AA$. The closest $\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ to the plane is at a distance of $0.4460 \AA$, while the closest Br^{-}is only $0.042 \AA$ from the plane (Fig. 1). Each Br^{-}forms a total of seven hydrogen bonds with $\mathrm{NH}, \mathrm{NH}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ donors. $\mathrm{H}_{2} \mathrm{O}$ hydrogen bonds as an acceptor to amino N . In this manner, an extended three-dimensional network is formed. Fig. 2 shows the cation disposition. One of the H atoms, H6A, exhibits bifurcated hydrogen bonding.

The cations form stacks running parallel to the b axis. The closest $\pi-\pi$ stacking interaction is between two inversionrelated cations (Fig. 1). The interplanar separation is 3.358 (5) \AA, while the distance between the two centroids of the six-membered rings is 3.492 (5) \AA. The angle between the vector joining the centroids and the vector perpendicular to the molecular plane is $15.9(4)^{\circ}$. The antiparallel disposition of the cations is expected from the dipole-dipole interaction. The

Received 18 August 2003
Accepted 29 August 2003
Online 5 September 2003

Figure 1
Hydrogen bonding of bromide and of water; $\pi-\pi$ contacts are also shown. Labeled atoms in the figure are defined by the following transformations: O $(1-x, 2-y, 1-z)$, O0A $(x-1, y, z)$, N1B $(x-1, \mathrm{y}, \mathrm{z}-1)$, N6B $(x-1, y, z-1), \mathrm{N} 6 H(1-x,-1-y,-z), \mathrm{N} 6 D(x, y, z-1), \mathrm{N} 2 \mathrm{~F}(1-x$, $1-y, 1-z), \mathrm{N} 2 A(x, y, z)$
rather close stacking implies significant $\pi-\pi$ interaction. (Haddad et al., 2003).

There are no significant $\mathrm{Br} \cdots \mathrm{Br}$ interactions, the closest contact being 4.264 (4) Å.

Experimental

1 mmol 2,6-diaminopyridine (98\%) was dissolved in 20 ml of 95% ethyl alcohol. While stirring, 48% hydrobromic acid was added dropwise until the pH reached 3. The solution was then brought to boiling for ten minutes. The beaker was left uncovered at room temperature. Parallelpiped-shaped crystals developed next morning, colored, surprisingly, pink.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{Br}^{-} \cdot \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=208.07 \\
& \text { Triclinic, } P \bar{P} \\
& a=7.1225(12) \AA \\
& b=7.2333(8) \AA \AA \\
& c=8.7082(13) \AA \\
& \alpha=91.557(11)^{\circ} \\
& \beta=102.518(17)^{\circ} \\
& \gamma=112.627(11)^{\circ} \\
& V=401.21(10) \AA^{3}
\end{aligned}
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.722 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 28 \\
& \quad \text { reflections } \\
& \theta=5.9-18.1^{\circ} \\
& \mu=5.06 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Parallelepiped, pink } \\
& 0.40 \times 0.35 \times 0.28 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens $P 2_{1}$ diffractometer upgraded to $P 4$
ω scans
Absorption correction: ψ scan
(XPREP in SHELXTL; Bruker, 1996)
$T_{\text {min }}=0.146, T_{\text {max }}=0.242$
1781 measured reflections
1412 independent reflections

$$
\begin{aligned}
& 1292 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.031 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-8 \rightarrow 1 \\
& k=-8 \rightarrow 8 \\
& l=-10 \rightarrow 10 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: }<0.01 \%
\end{aligned}
$$

Figure 2
Cation disposition, showing hydrogen bonding with pyridine and amino N atoms. Displacement ellipsoids are drawn at the 30% probability level..

Refinement

Refinement on $F^{2} \quad w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0593 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$+0.2936 P]$
$w R\left(F^{2}\right)=0.100$
$S=1.09$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
1412 reflections
99 parameters
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3}$
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O}$	0.86	1.76	$2.583(5)$	161
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Br}^{\mathrm{i}}$	0.86	2.52	$3.353(3)$	162
$\mathrm{~N} 6-\mathrm{H} 6 A \cdots \mathrm{Br}^{\mathrm{ii}}$	0.86	2.91	$3.464(4)$	124
$\mathrm{~N} 6-\mathrm{H} 6 A \cdots \mathrm{Br}^{\mathrm{i}}$	0.86	3.01	$3.735(4)$	144
$\mathrm{~N} 6-\mathrm{H} 6 B \cdots \mathrm{Br}^{\mathrm{iii}}$	0.86	2.71	$3.553(4)$	167
$\mathrm{O}-\mathrm{H} 1 \cdots \mathrm{Br}^{\mathrm{iv}}$	$0.882(19)$	$2.46(2)$	$3.329(4)$	$169(5)$
$\mathrm{O}-\mathrm{H} 2 \cdots \mathrm{Br}^{\mathrm{v}}$	$0.881(19)$	$2.47(3)$	$3.314(4)$	$161(5)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{Br}^{\text {vi }}$	0.86	3.51	$3.752(3)$	100

Symmetry codes: (i) $x-1, y, z-1$; (ii) $1-x, 1-y,-z$; (iii) $x, y, z-1$; (iv) $1-x, 2-y, 1-z$; (v) $x-1, y, z$; (vi) $1-x, 1-y, 1-z$.

H atoms attached to water O atoms were located in a difference map and refined with loose restraints. Other H atoms were placed geometrically $(\mathrm{C}-\mathrm{H}=0.86-0.93 \AA)$, with $U_{\text {iso }}$ constrained to be $1.2 U_{\text {eq }}$ of the carrier atom. The largest residual electron density peak is $0.437 \mathrm{e}^{\circ} \AA^{-3}$ and lies $1.482 \AA$ from the Br atom.

Data collection: XSCANS (Bruker, 1996); cell refinement: $X S C A N S$; data reduction: XSCANS; program(s) used to solve structure: $X S$ in SHELXTL (Bruker, 1996); program(s) used to refine structure: $X L$ in $S H E L X T L$; molecular graphics: $X P$ in SHELXTL; software used to prepare material for publication: XCIF in SHELXTL.

References

Bruker (1996). SHELXTL (Version 5.10) and XSCANS (Version 2.20) Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (2001). Curr. Sci. 81, 1038-1055.
Haddad, S., Vij, A. \& Willett, R. D. (2003). J. Chem. Cryst. 33, 245-251.
Haddad, S. \& Willett, R. D. (2001). J. Chem. Cryst. 31, 37-41.
Willett, R. D., Awwadi, F., Butcher, R., Haddad, S. \& Twamley, B. (2003).
Crystal Growth Des. 3, 301-311.

